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The 2013-2015 outbreak of Ebola was the largest epidemic of this disease to date, with over 28,000 cases reported. In addition to its size, this outbreak was the first time the disease occurred in West Africa, taking the world by surprise, and the first time an Ebola epidemic exhibited large-scale international spreading. The appearance of the disease in a new landscape and social setting further complicated control efforts. Like other natural disasters, the failure to forecast and prepare for this outbreak resulted in catastrophe for the people affected. Just as NOAA predicts hurricanes, the world needs systems for anticipating disease emergence.

During the Ebola crisis, working across the Atlantic Ocean at the University of Georgia, my colleagues and I actively followed the outbreak. We observed commonalities between problems encountered in ecological forecasting and problems encountered in epidemics.  Ecology is the study of species in their environments, and ecology possesses a lot of tools for measuring the spatiotemporal patterns of a dynamic system. Additionally, disease emergence and ecosystem ecology are causally connected.  The known risk factors for "spillover" of pathogens from wildlife to humans include deforestation, extreme climate events, and encroachment by human settlements into traditionally natural areas. It follows that our ecological tool kit might be put to use to predict where and when Ebola spillover is likely. Disease spillover occurs within the fabric of both space and time, with general background environmental conditions limiting where the natural reservoir of disease can persist and seasonal and random shifts in these conditions triggering distinct spillover events. To investigate the ultimate causes of this outbreak, we collected terabytes of data from multiple sources, including both environmental and demographic information for the African continent from the time of the first recorded Ebola case in the 1960s until the present.  



Ebola spillover risk model 

Ecological models predict pathogen spillover 

Schmidt et al. (2017) 

Conclusion: Spillover intensity is highest during 
transitions between wet and dry seasons 
 
Key data 
- Monthly rainfall anomalies 
- Population density 
- Satellite-based measurements of vegetation and 
potential evapotranspiration 
 
Predictive performance 80% 
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By combining predictive models developed for “machine learning” from "big data" with our understanding of the ecology of spillover, we developed a statistical model to tease apart risk factors associated with past spillover events. This model relies on a NOAA data product for estimating continent-wide monthly rainfall in Africa. In principle, this model could also be used for both real-time "nowcasting" and prediction to help anticipate and contain outbreaks when they occur. To do this will require some further research into the best methods for short term prediction and putting in place both data pipelines and channels for human communications.






Metapopulation models for epidemic forecasting 
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Individual administrative units in West African countries 

Models can be updated in real time to 
complement health care interventions 
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Kramer et al. 2016 

Key findings 
- Effectiveness of border 
closure 
- Spatial spread driven by 
long distance movement 
among population centers 
that act as "transmission 
hubs" 
- Natural "firebreaks" 
 
Model validation 
- Predicts out-of-sample data 
- Well calibrated 95% 
prediction intervals 
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Another tool that ecologists have is the idea of a "metapopulation" -- a model that represents a distributed but interconnected society as a population of populations. At the beginning of an outbreak, responding agencies and organizations such as the Centers for Disease Control, ministries of health, or Doctors Without Borders must decide if, where, and how to respond. At the early stages where only one or a few cases have been identified, there are many unknowns and quantifying risk is difficult. One way to measure the risk (and uncertainty of the estimate) is by virtually recreating the event through a combination of retrospective analytics and forward simulation. In the case of Ebola, we applied an approach we had previously developed to study the spread of White nose syndrome -- a fungal disease that starting affecting North American bats about ten years ago.  Again, we mined sources for information on human population size and mobility to improve our conventional model of disease spread. We then used a this metapopulation model to predict how Ebola would spread through different districts in West Africa. In this plot, the colored points represent the actual dates at which Ebola first arrived in a district while the blue bars indicate the range of times consistent with our model. This figure shows that despite the complex and idiosyncratic factors that regulate human behavior, the course of an epidemic is nonetheless remarkably predictable. Moreover, done in real time, this type of forecasting can be updated as new cases arise, improving our accuracy further. Then, interventions can be targeted at areas most vulnerable to the disease appearing or social hubs that are central to redistribution, enabling health care workers to stay one step ahead of the disease. In my group, we're now working on algorithms that take data and model like these and return strategies that are optimal for containment.
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Circle proportional to annual number of new cases for 
endemic diseases (blue) and outbreak size for 
zoonoses (green) 

214 million 
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Data sources: CDC & WHO 

Emergence of Modern Diseases 
Date is either discovery of infectious agent or occurrence of first 
major modern epidemic 
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Here’s a timeline of various infectious diseases  -- noted either by discovery date or date of first major epidemic -- and the annual burden of new cases, all in North America, so at home or close to home. Ecology is an important component to the dynamics of every single one of these – even the ones that we think of as primarily human pathogens, like HIV – which is believed to have originated in multiple spillover events from chimpanzees to humans in the early twentieth century. An increase in forecasting efforts would help focus preventative management efforts, therefore decrease the financial burden. 
�





Vision: A future global warning system for infectious disease emergence 

Modified from Han & Drake (2016) 
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In the future, I the negative consequences of a zoonotic spillover might be minimized. What we need is a global warning system that uses dynamical models and state-of-the-art analytics to stitch together various pieces of information from different places. As for other severe events, we might think of different phases. During watch phase, preventative management requires understanding the background risk of a spillover event. This requires certain kinds of analytics. Risk mapping combines human demographics and movement data, livestock health surveillance, likely wildlife reservoirs and climatic information to identify regions and seasons where spillover events are likely. During warning phase, interventions can be launched to contain a disease after a spillover event occurs. This requires short term forecasting of the number and location of cases. Forecasts can be updated in real-time using data traditionally collected as part of a epidemiological response. Finally, during the emergency phase – full blown epidemics -- models can be used to compare the effectiveness of hypothetical control measures and to plan strategy. Access to both “on the ground” conditions and plausible responses are essential for effective scenario analysis.  In all cases, there is a hard limit these analytical approaches; it is set by the volume and quality of basic scientific information. 




Steps towards a 
proactive science 

• Better, faster, richer data streams  
• Strategic "data stockpile" 
• Research in quantitative analytics and 

models for infectious disease 
forecasting and decision support 

• Stronger collaborations between 
scientists, policy makers, and 
government agencies 
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Where does this leave us? First, ecologists have many of the tools that are needed in the fight against infectious diseases. To develop a robust disease forecasting technology, we need access to data. Data on everything from airline flows to livestock surveillance can provide important information on disease risk. We also need more information on what needs to be known. Analyzing past epidemics can give us information on what patterns to look for and what questions to ask. Amassing these data and making it accessible for scientists to work with is the first step towards building a global warning system for infectious diseases.
The next step is to put greater emphasis on analytics -- the methods required to make the data useful. Sorting through data from many complex systems through space and time to identify disease predictors is like trying to find a needle in a very large haystack. So, how do we find this needle? One approach is to sort through the haystack stick by stick. This will never work. What's needed is something totally different: like bringing in a big honking electromagnet. Turn on the juice and pull the needles to the top.  This is what machine learning is to the vast array of ecological, geographic, and remotely sensed information that ecosystem scientists have been compiling for decades. Each stage of the warning system is going to need different kinds of data and different magnets. This is what my group does – we develop new magnets, new quantitative methods that are our strongest defense against emerging infectious diseases and need to be at the forefront of our efforts to combat them. 
But, finally, we need a framework to facilitate connection between government agencies, policy/decision makers, and scientists. Proactively identifying and responding to disease risk must be a collaborative effort. From the southwestern corner of Guinea to the center of NYC, no population is safe from emerging diseases. The good news is that ecologists have tools to study these risks through space and time, and create models that anticipate these outbreaks before they happen. Indeed, if you ask me, the most tractable thing we could do right now is to create a federal body dedicated to infectious disease intelligence and forecasting. Current efforts to support the development of infectious disease analytics are welcome, but greater resources and – especially -- coordination are needed to realize their potential. This will require deliberate investment in a quantitative workforce, scaling up systems for data acquisition, an ethic of information sharing, and a culture where decision making and academic modeling are mutually supportive and engaged. If we use the conceptual framework and quantitative methodology that ecosystem science provides and apply it to forecasting infectious diseases, I envision a future where epidemic surprises are a thing of the past.
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